

Hollow Fiber-Supported Designer Ionic Liquid Sponges for Post-combustion CO₂ Scrubbing

Jong Suk Lee^a William J. Koros^{a,‡} Patrick C. Hillesheim^b Sheng Dai^{b,‡}

July 11, 2012 NETL CO₂ Capture Technology Meeting

> a; Georgia Institute of Technology b; Oak Ridge National Laboratory

Goal: To develop ionic liquid hollow fiber sorbents for post-combustion CO₂ capture.

- Oak Ridge National Laboratory (Dai Group)
 - Increase efficiency of CO₂ capture via molecular design of alcohol-functionalized ionic liquids (ILs).
 - Develop next generation task-specific ionic liquids (TSILs) with CO₂ binding bases attached.
- Georgia Institute of Technology (Koros Group)
 - Integrate TSILs into high surface-to-volume hollow fiber modules.
- Sci-Tec
 - Evaluate feasibility of large scale synthesis, cost analysis, and future implementation of binary IL/superbase systems.

Background – Hollow Fiber Sorbents

Rapid Temperature Swing Adsorption Process

Advantage of Hollow Fiber Sorbents

<u>Hollow</u> fiber configuration with impermeable barrier layers creates "adsorbing heat exchangers," enabling many options not available to pellets or monoliths

Next generation hollow fiber sorbents

Ionic liquid & super base imbibed into CELL WALLS of pores in fiber wall (<1 μm)

> Key concept: Imbibe ionic liquid and superbase into highly interconnected CELL WALLS of open porous network for rapid kinetics and high sorption uptake.

(Lee et al. Polymer 53 2012)

Integrated Ionic Liquid-Superbase for CO₂ Capture

Wavenumber/ cm

Development of Ionic Liquid Sorbents

- Increase in long-term thermal stability for temperatures up to 250 °C
- Improved kinetics
- Increased maximum CO₂ capacity (~9 wt%)

Working capacity; $wt\% \equiv \frac{M_{sorbed CO2}}{M_{sorbed CO2} + M_{sorbents}} \times 100\%$

Benefits of Ionic Liquid/Superbase Containing Polymer Sorbents

Fine sized Torlon® powders simulate thin pore walls typically formed in fiber supports!

Ionic liquid-superbase loaded Torlon® powders improved both CO₂ equilibrium and kinetic sorption!

(Lee et al. Polymer 53 2012)

Development of Ionic Liquid Hollow Fiber Sorbents

SEM image for [BMIM][Tf₂N]-DBU loaded Torlon® fibers

Optimized two-step non-solvent infusion of ionic liquid & superbase maintains open celled porous walls for improved sorption kinetics.

SEM images for the cross section of Torlon®-[BMIM][Tf₂N]-DBU fibers;

[BMIM][Tf₂N]-DBU swells polymer walls, closing pore cells in outer region and results in slow sorption kinetics!

- 1. Two step non-solvent infusion technique (i.e. (1) IL/MeOH & (2) DBU/Hexane) allows effective loading levels of ionic liquid/superbase.
- 2. <u>Concentration level and infusion time of ionic liquid and DBU</u> were optimized to avoid pore collapse.

Defect-free Lumen Side Barrier Layer Formation

A fiber lumen layer prevents contact between flue gas and bore side hot & cold water used to control temperature during rapid cycle sorption and desorption.

"Toluene-assisted" drying creates defect-free fiber lumen layers, nearly impermeable to water

(ACS Appl. Mater. Interfaces, 2011)

→ Neoprene®+crosslinking agents (TSR-633) provides lumen side barrier layer!

Diluting lumen coating latex with 8% H₂O avoids clogging during post-treatment.

"Toluene-assisted" drying creates defect-free fiber lumen layers with a He permeance of < 2 GPU and He/N₂ selectivity of ~5.

Note that GPU refers to 1×10⁻⁶ ccSTP/cm²/s/cmHg.

- 1. Develop "single-component" (ionic liquid-superbase) to avoid evaporation.
 - Synthesis of new single-component IL-superbase compounds is under way.
- 2. Evaluate long-term *chemical stability* of ionic liquid/base systems with simulated flue gas conditions.
 - Investigate effects of H_2O on CO_2 multicycle sorption stability.
- 3. Pursue fiber sorbents with both fast kinetics <u>& high sorption uptake</u>.
 - Either: (a) incorporate single-component compounds, or (b) functionalize Torlon® fibers with superbase, to eliminate 2-stage infusion and superbase loss.
- 4. Evaluate feasibility of integrated hollow fiber sorbents under realistic conditions.
 - Investigate effects of H₂O on CO₂ multicycle sorption stability in actual modules.

- Ionic liquid/base systems are efficient reversible carbon capture media.
- The synergistic benefits of combining ionic liquid/superbase with porous polymer hollow fibers were demonstrated.
- Delicate morphological features in the open-celled porous wall can be maintained by the *two-step non-solvent infusion protocol*.
- A defect free crosslinked Neoprene® lumen layer was created to allow temperature control during rapid cycle sorption and desorption.

Acknowledgement: Innovative Materials & Processes for Advanced Carbon Capture Technology (IMPACCT) DE-FOA-0000208: Award: DE- AR0000104 ARPA-E Solvent Development for Carbon Capture